Public Paper
-
Invariant Measures for Iterated Function Systems of Generalized Cantor Sets
ISSN: 2195-1381Publisher: author   
Invariant Measures for Iterated Function Systems of Generalized Cantor Sets
View Paper PDF
Abstract
In this paper, we formulate Iterated Function Systems of Generalized Cantor Sets (IFSGCS) and also show that their invariant measures using Markov operator and Barnsley-Hutchinson multifunction. Keywords: Cantor set, Borel set, Fractal, Markov operator, Iterated function system, Invariant measure.
SUBMIT CONCEPT ASK QUESTION
International Category Code (ICC):
ICC-0202
Md. Islam, Md. Islam
International Article Address (IAA):
Pending
Paper Profile:
Private
Visitors: 0
Paper Evaluation: Pending
ASI-Factor: 0
Paper Improving: Pending
Paper Flaws: 0
References
[1] Devaney R. L. (1992). A First Course in Chaotic Dynamical Systems.(Boston University, Addison-Wesley, West Views Press).
[2] Addison P. S. (1997). Fractals and Chaos.(Institute of Physics, Bristol).
[3] J. Islam, S. Islam, Generalized cantor sets and its fractal dimension, Bangladesh Journal of Science and Industrial Research,vol. 46, no. 4, pp.499-506, 2011.
[4] J. Myjak, T. Szarek, Attractors of iterated function systems and Markov operators, Abstract and Applied Analysis, vol. 8, pp. 479-502, 2003.
[5] Barnsley M. F. (1993).Fractals Everywhere. (Massachusetts).
[6] J. E. Hutchinson, Fractals and self-similarity, Indiana University Mathematics Journal, vol. 30, no. 5, pp.713-747, 1981.
[7] Royden H. L. (1988). Real Analysis. (New Jersey, U.S.A).
[8] S. K. Liu, Z. T. Fu, S. D. Liu, K. Ren, Scaling equation for invariant measure, Commun. Theor. Phys., vol. 39, no. 3, pp. 295-296, 2003.
[9] T. Komorowski, J. Tyrcha, Asymptotic properties of some Markov operators, Bulletin of the Polish
Academy of Sciences Mathematics, vol. 37, no. 16, pp. 221-228, 1989.
[10] Lasota A., Mackey M. C. (1994). Chaos, Fractals and Noise, Stochastic Aspects of Dynamics, Applied
Mathematical Sciences. (Springer-Verlag, New York).