German Journal of
Advanced Mathematical Sciences

×

 

Suggest this Article to:

TOP INDEXERS
×

 

Suggest this Article to:

TOP ACADEMIC SEARCH ENGINES
×

 

Suggest this Article to:

TO 84 SEARCH ENGINES
  1. Google
  2. Bing
  3. Gigablast Search Index
  4. Scrubtheweb Directory
  5. Million Short
  6. Free Web Submission
  7. whatUseek
  8. Exact Seek
  9. Library of Congress
  10. Archives Hub
  11. National Archives
  12. arXiv e-Print Archive
  13. Archivenet
  14. NASA Historical Archive
  15. National Agricultural Library
  16. Smithsonian Institution Research Information System
  17. The British Library Catalogues & Collections
  18. CIA World Factbook
  19. State Legislative Websites Directory
  20. OpenDOAR
  21. Catalog of U.S. Government Publications
  22. Library of Congress
  23. Archives Hub
  24. National Archives
  25. arXiv e-Print Archive
  26. Archivenet
  27. NASA Historical Archive
  28. National Agricultural Library
  29. Smithsonian Institution Research Information System
  30. The British Library Catalogues & Collections
  31. CIA World Factbook
  32. State Legislative Websites Directory
  33. OpenDOAR
  34. Catalog of U.S. Government Publications
  35. Library of Congress
  36. Archives Hub
  37. National Archives
  38. arXiv e-Print Archive
  39. Archivenet
  40. NASA Historical Archive
  41. National Agricultural Library
  42. Smithsonian Institution Research Information System
  43. The British Library Catalogues & Collections
  44. CIA World Factbook
  45. State Legislative Websites Directory
  46. OpenDOAR
  47. Catalog of U.S. Government Publications
  48. Library of Congress
  49. Archives Hub
  50. National Archives
  51. arXiv e-Print Archive
  52. Archivenet
  53. NASA Historical Archive
  54. National Agricultural Library
  55. Smithsonian Institution Research Information System
  56. The British Library Catalogues & Collections
  57. CIA World Factbook
  58. State Legislative Websites Directory
  59. OpenDOAR
  60. Catalog of U.S. Government Publications
  61. Library of Congress
  62. Archives Hub
  63. National Archives
  64. arXiv e-Print Archive
  65. Archivenet
  66. NASA Historical Archive
  67. National Agricultural Library
  68. Smithsonian Institution Research Information System
  69. The British Library Catalogues & Collections
  70. CIA World Factbook
  71. State Legislative Websites Directory
  72. OpenDOAR
  73. Catalog of U.S. Government Publications
  74. CIA World Factbook
  75. State Legislative Websites Directory
  76. OpenDOAR
  77. Catalog of U.S. Government Publications
  78. Catalog of U.S. Government Publications


Public Paper
  •  

    Invariant Measures for Iterated Function Systems of Generalized Cantor Sets

     
     
         
    ISSN: 2195-1381

    Publisher: author   

Invariant Measures for Iterated Function Systems of Generalized Cantor Sets
,
View Paper PDF
Abstract In this paper, we formulate Iterated Function Systems of Generalized Cantor Sets (IFSGCS) and also show that their invariant measures using Markov operator and Barnsley-Hutchinson multifunction. Keywords: Cantor set, Borel set, Fractal, Markov operator, Iterated function system, Invariant measure.

SUBMIT CONCEPT ASK QUESTION
International Category Code (ICC):
ICC-0202
Md. Islam, Md. Islam
International Article Address (IAA): Pending
Paper Profile: Private
Visitors: 0
Paper Evaluation: Pending
ASI-Factor: 0
Paper Improving: Pending
Paper Flaws: 0

References
[1] Devaney R. L. (1992). A First Course in Chaotic Dynamical Systems.(Boston University, Addison-Wesley, West Views Press). [2] Addison P. S. (1997). Fractals and Chaos.(Institute of Physics, Bristol). [3] J. Islam, S. Islam, Generalized cantor sets and its fractal dimension, Bangladesh Journal of Science and Industrial Research,vol. 46, no. 4, pp.499-506, 2011. [4] J. Myjak, T. Szarek, Attractors of iterated function systems and Markov operators, Abstract and Applied Analysis, vol. 8, pp. 479-502, 2003. [5] Barnsley M. F. (1993).Fractals Everywhere. (Massachusetts). [6] J. E. Hutchinson, Fractals and self-similarity, Indiana University Mathematics Journal, vol. 30, no. 5, pp.713-747, 1981. [7] Royden H. L. (1988). Real Analysis. (New Jersey, U.S.A). [8] S. K. Liu, Z. T. Fu, S. D. Liu, K. Ren, Scaling equation for invariant measure, Commun. Theor. Phys., vol. 39, no. 3, pp. 295-296, 2003. [9] T. Komorowski, J. Tyrcha, Asymptotic properties of some Markov operators, Bulletin of the Polish Academy of Sciences Mathematics, vol. 37, no. 16, pp. 221-228, 1989. [10] Lasota A., Mackey M. C. (1994). Chaos, Fractals and Noise, Stochastic Aspects of Dynamics, Applied Mathematical Sciences. (Springer-Verlag, New York).



 

Basics

 

Contact and Support

 

For authors

 

Legal

Home

About

Evaluation

Contact Us

Linkedin

Facebook Twitter

Guide for authors

submitpaper

ISSN Checker

Terms & Conditions

Privacy Policy

ISBN CHECKER